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uch of the public sees computational skill as the hallmark of what

it means to know mathematics at the elementary school level.
Although this is far from the truth, the issue of computational

skills with whole numbers is, in fact, a very important part of the elementary curricu-

lum, especially in grades 2 to 6.

Rather than constant reliance on a
single method of subtracting (or any oper-
ation), computational methods can and
should change flexibly as the numbers and
the context change. In the spirit of the
Standards, the issue is no longer a matter
of “knows how to subtract three-digit
numbers”; rather it is the development over
time of an assortment of flexible skills that
will best serve students in the real world.

It is quite possible that you do not
have these skills, but you can acquire
them. Work at them as you learn about
them. Equip yourself with a flexible array of
computational strategies.

Toward Computational
Fluency

With today’s technology the need for
doing tedious computations by hand has
essentially disappeared. At the same time,

1 Flexible methods of computation involve taking apart

and combining numbers in a wide variety of ways.
Most of the partitions of numbers are based on place
value or “compatible” numbers—number pairs that work

easily together, such as 25 and 75.

Invented strategies are flexible methods of computing that vary with the
numbers and the situation. Successful use of the strategies requires that
they be understood by the one who is using them—hence, the term invented.
Strategies may be invented by a peer or the class as a whole; they may

even be suggested by the teacher. However, they must be constructed by
the student.

Flexible methods for computation require a good understanding of the opera-
tions and properties of the operations, especially the turnaround property
and the distributive property for multiplication. How the operations are
related—addition to subtraction, addition to multiplication, and multiplica-

tion to division—is also an important ingredient.

The traditional algorithms are clever strategies for computing that have been
developed over time. Each is based on performing the operation on one place
value at a time with transitions to an adjacent position (trades, regrouping,
“horrows,” or “carries”). These algorithms work for all numbers but are often

far from the most efficient or useful methods of computing.



we now know that there are numerous methods of computing that can be handled
either mentally or with pencil-and-paper support. In most everyday instances, these
alternative strategies for computing are easier and faster, can often be done mentally,
and contribute to our overall number sense. The traditional algorithms (procedures for
computing) do not have these benefits.

Consider the following problem.

Mary has 114 spaces in her photo album. So far she has 89 photos in
the album. How many more photos can she put in before the album is full?

Try solving the photo album problem using some method other than the one you
were taught in school. If you want to begin with the 9 and the 4, try a different

@ approach. Can you do it mentally? Can you do it in more than one way? Work on
this before reading further.

Here are just four of many methods that have been used by students in the pri-
mary grades to solve the computation in the photo album problem:

e 89+ 11is100. 11 + 14 is 25.

e 90 + 10 is 100 and 14 more is 24 plus 1 (for 89, not 90) is 25.

e Take away 14 and then take away 11 more or 25 in all.

e 89,99, 109 (that'’s 20). 110, 111, 112, 113, 114 (keeping track on fingers) is 25.

Strategies such as these can be done mentally, are generally faster than Direct Modeling
the traditional algorithms, and make sense to the person using them. Every
day, students and adults resort to error-prone, traditional strategies when other, Counts by ones.
more meaningful methods would be faster and less susceptible to error. Flexibil- ‘
ity with a variety of computational strategies is an important tool for successful Use of base-ten models.
daily living. It is time to broaden our perspective of what it means to compute. +

Figure 4.1 lists three general types of computing. The initial, inefficient
direct modeling methods can, with guidance, develop into an assortment of Invented Strategies

invented strategies that are flexible and useful. As noted in the diagram,
many of these methods can be handled mentally, although no special meth-
ods are designed specifically for mental computation. The traditional pencil-
and-paper algorithms remain in the mainstream curricula. However, the

Supported by written recordings.

Mental methods when appropriate.

attention given to them should, at the very least, be debated. +
Traditional Algorithms

Direct Modeling (f desired)

The developmental step that usually precedes invented strategies is Usually requires guided development.
called direct modeling: the use of manipulatives or drawings along with count-
ing to represent directly the meaning of an operation or story problem. Fig- FIGURE 4.1
ure 4.2 provides an example using base-ten materials, but often students use Three types of computational
simple counters and count by ones. strategies.
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Students who consistently count by ones most likely have not
developed base-ten grouping concepts. That does not mean that they
should not continue to solve problems involving two-digit numbers. As
you work with these children, suggest (don’t force) that they group coun-
ters by tens as they count. Perhaps instead of making large piles, they
might make bars of ten from connecting cubes or organize counters in
cups of ten. Some students will use the ten-stick as a counting device to
keep track of counts of ten, even though they are counting each segment
of the stick by ones.

When children have plenty of experience with base-ten concepts
and models, they begin to use these ideas in the direct modeling of the
problems. Even when students use base-ten materials, they will find
many different ways to solve problems.

00 1
L e —
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A possible direct modeling of 36 x 7 using
base-ten models.

Invented Strategies

We will refer to any strategy other than the traditional algorithm and that does
not involve the use of physical materials or counting by ones as an invented strategy.
These invented strategies might also be called personal and flexible strategies. At times,
invented strategies are done mentally. For example, 75 + 19 can be done mentally
(75 + 20 is 95, less 1 is 94). For 847 + 256, some students may write down intermediate
steps to aid in memory as they work through the problem. (Try that one yourself.) In
the classroom, some written support is often encouraged as strategies develop. Written
records of thinking are more easily shared and help students focus on the ideas. The
distinction between written, partially written, and mental is not important, especially
in the development period.

Over the past two decades, a number of research projects have focused attention
on how children handle computational situations when they have not been taught a
specific algorithm or strategy. Three elementary curricula each base the development of
computational methods on student-invented strategies. These are often referred to as
“reform curricula” (Investigations in Number, Data, and Space; Trailblazers; and Everyday
Mathematics). “There is mounting evidence that children both in and out of school can
construct methods for adding and subtracting multi-digit numbers without explicit
instruction” (Carpenter et al., 1998, p. 4). Data supporting students’ construction of
useful methods for multiplication and division have also been gathered (Baek, 1998;
Fosnot & Dolk, 2001; Kamii & Dominick, 1997; Schifter, Bastable, & Russell, 1999Db).

Not all students invent their own strategies. Strategies invented by class members
are shared, explored, and tried out by others. However, no student should be permitted
to use any strategy without understanding it.

Contrasts with Traditional Algorithms

There are significant differences between invented strategies and the traditional
algorithms.

1. Invented strategies are number oriented rather than digit oriented. For example, one
invented strategy for 68 x 7 begins 7 x 60 is 420 and 56 more is 476. The first
product is 7 times sixty, not the digit 6, as would be the case in the traditional
algorithm. Using the traditional algorithm for 45 + 32, children never think of 40
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and 30 but rather 4 + 3. Kamii, long a crusader against standard algorithms,
claims that they “unteach” place value (Kamii & Dominick, 1998).

2. Invented strategies are left-handed rather than right-handed. Invented strategies
begin with the largest parts of numbers, those represented by the leftmost digits.
For 26 x 47, many invented strategies begin with 20 x 40 is 800, providing some
sense of the size of the eventual answer in just one step. The traditional algorithm
begins with 7 x 6 is 42. By beginning on the right with a digit orientation, tradi-
tional methods hide the result until the end. Long division is an exception.

3. Invented strategies are flexible rather than rigid. Invented strategies tend to change
with the numbers involved in order to make the computation easier. Try each of
these mentally: 465 + 230 and 526 + 98. Did you use the same method? The tra-
ditional algorithm suggests using the same tool on all problems. The traditional
algorithm for 7000 — 25 typically leads to student errors, yet a mental strategy is
relatively simple.

Benefits of Invented Strategies

The development of invented strategies delivers more than computational facility.
Both the development of these strategies and their regular use have positive benefits
that are difficult to ignore.

e Base-ten concepts are enhanced. There is a definite interaction between the
development of base-ten concepts and the process of inventing computational
strategies (Carpenter et al., 1998). “Invented strategies demonstrate a hallmark
characteristic of understanding” (p. 16). The development of invented strate-
gies should be integrated with the development of base-ten concepts, even as
early as first grade.

e [nvented strategies are built on student understanding. Students rarely use an
invented strategy they do not understand. In contrast, students are frequently
seen to use traditional algorithms without being able to explain why they work
(Carroll & Porter, 1997).

e Students make fewer errors with invented strategies. Data collected by Kamii and
Dominick (1997) provide some hard evidence for this claim. With traditional
algorithms, students tend to develop systematic errors or “buggy algorithms”
that they use again and again. Careless errors often result from confusion
with carried digits or column alignment. Systematic errors are not typical
of invented strategies.

e [nvented strategies serve students at least as well on standard tests. Evidence sug-
gests that students not taught traditional algorithms fare about as well in com-
putation on standardized tests as students in traditional programs (Campbell,
1996; Carroll, 1996, 1997; Chambers, 1996). As an added bonus, students tend
to do quite well with word problems, since they are the principal vehicle for
developing invented strategies. The pressures of external testing do not dictate
a focus on the traditional algorithms.

Mental Computation

A mental computation strategy is simply any invented strategy that is done men-
tally. What may be a mental strategy for one student may require written support by
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another. Initially, students should not be asked to do computations mentally, as this
may threaten those who have not yet developed a reasonable invented strategy or who
are still at the direct modeling stage. At the same time, you may be quite amazed at the
ability of students (and at your own ability) to do computations mentally.

Try your own hand with this example:

342 + 153 + 481

For the addition task just shown, try this method: Begin by adding the hun-
dreds, saying the totals as you go—3 hundred, 4 hundred, 8 hundred. Then add
on to this the tens in a successive manner and finally the ones. Do it now.

When the computations are a bit more complicated, the challenge is more inter-
esting and generally there are more alternatives. Here is an example taken from the
grades 3-5 chapter of the NCTM Standards (p. 152).

7 x 28

The Standards lists three paths to a solution but there are at least two more
(NCTM, 2000, p. 152). How many ways can you find to do this one?

As your students become more adept, they can and should be challenged from
time to time to do appropriate computations mentally. Do not expect the same skills
of all students.

Traditional Algorithms

Teachers often ask, “How long should I wait until I show them the ‘regular’ way?”
The question is based on a fear that without learning the same methods that all of us
grew up with, students will somehow be disadvantaged. For addition and subtraction
this is simply not the case. The primary goal for all computation should be students’
ability to compute in some efficient manner—not what algorithms are used. That is,
the method of computing is not the objective; the ability to compute is the goal. For
multiplication and division, many teachers will see a greater need for traditional
approaches, especially with three or more digits involved.

Abandon or Delay Traditional Algorithms

Flexible left-handed methods done mentally with written support are absolutely
all that are necessary for addition and subtraction. Developed with adequate practice,
these flexible approaches will become mental and very efficient for most students by
fifth grade and will serve them more than adequately throughout life. You may find
this difficult to accept for two reasons: first, because the traditional algorithms have
been a significant part of your mathematical experiences and, second, because you may
not have learned these skills. These are not reasons to teach the traditional algorithms
for addition and subtraction.

For multiplication and division, the argument requires some discussion, especially
as the number of digits involved increases. In the third grade, when students need only
multiply or divide by a single digit, invented strategies are not only adequate but also
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will provide the benefits of understanding and flexibility mentioned earlier. The same
types of skills used for two-digit numbers will be carried over to more complex compu-
tations as long as the focus remains on invented strategies and does not shift to the tra-
ditional algorithms. It is worth noting again that there is evidence that students do
quite well on the computation portions of standardized tests even if they are never
taught the traditional methods.

If, for whatever reason, you feel you must teach the traditional algorithms, con-
sider the following:

e Students will not invent the traditional methods because right-handed meth-
ods are simply not natural. This means that you will have to introduce and
explain each algorithm.

e No matter how carefully you suggest that these right-handed, borrow-and-
carry, digit-oriented methods are simply another alternative, students will
sense that these are the “right ways” or the “real ways” to compute. This is
how Mom and Dad do it. This is what the teacher taught us. As a result, most
students will abandon any flexible left-handed methods they may have been
developing.

It is not that the traditional algorithms cannot be taught with a strong conceptual
basis. Textbooks have been doing an excellent job of explaining these methods for years.
The problem is that the traditional algorithms, especially for addition and subtraction,
are not natural methods for students. As a result, the explanations generally fall on deaf
ears. Far too many students learn them as meaningless procedures, develop error pat-
terns, and require an excessive amount of reteaching or remediation. If you are going
to teach the traditional algorithms, you are well advised to spend a significant amount
of time—months, not weeks—with invented methods. Delay! The understanding that
children gain from working with invented strategies will make it much easier for you to
teach the traditional methods.

Traditional Algorithms Will Happen

You probably cannot keep the traditional algorithms out of your classroom. Chil-
dren pick them up from older siblings, last year’s teacher, or well-meaning parents. Tra-
ditional algorithms are in no way evil, and so to forbid their use is somewhat arbitrary.
However, students who latch on to a traditional method often resist the invention of
more flexible strategies. What do you do then?

First and foremost, apply the same rule to traditional algorithms as to all strate-
gies: If you use it, you must understand why it works and be able to explain it. In an atmo-
sphere that says, “Let’s figure out why this works,” students can profit from making
sense of these algorithms just like any other. But the responsibility should be theirs,
not yours.

Accept a traditional algorithm (once it is understood) as one more strategy to put
in the class “tool box” of methods. But reinforce the idea that like the other strategies,
it may be more useful in some instances than in others. Pose problems in which a men-
tal strategy is much more useful, such as 504 — 498 or 75 x 4. Discuss which method
seemed better. Point out that for a problem such as 4568 + 12,813, the traditional algo-
rithm has some advantages. But in the real world, most people do those computations
on a calculator.
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Development of Invented Strategies:
A General Approach

Students do not spontaneously invent wonderful computational methods while
the teacher sits back and watches. Among different reform or progressive programs, stu-
dents tended to develop or gravitate toward different strategies suggesting that teachers
and the programs do have an effect on what methods students develop. This section
discusses general pedagogical methods for helping children develop invented strategies.

Use Story Problems Frequently

When computational tasks are embedded in simple contexts, students seem to be
more engaged than they are with bare computations. Furthermore, the choice of story
problems influences the strategies students use to solve them. Consider these problems:

Max had already saved 68 cents when Mom gave him some money for
running an errand. Now Max has 93 cents. How much did Max earn for his
errand?

George took 93 cents to the store. He spent 68 cents. How much does he
have left?

The computation 93 - 68 solves both problems, but the first is more likely than
the second to be solved by an add-on method. In a similar manner, fair-share division
problems are more likely to encourage a share strategy than a measurement or repeated
subtraction problem.

Not every task need be a story problem. Especially when students are engaged in
figuring out a new strategy, bare arithmetic problems are quite adequate.

Use the Three-Part Lesson Format

The three-part lesson format described in Chapter 1 is a good structure for an
invented-strategy lesson. The task can be one or two story problems or even a bare
computation but always with the expectation that the method of solution will be
discussed.

Allow plenty of time to solve a problem. Listen to the different strategies students are
using but do not interject your own. Challenge able students to find a second method,
solve a problem without models, or improve on a written explanation. Allow children
who are not ready for thinking with tens to use simple counting methods. Students
who finish quickly may share their methods with others before sharing with the class.

The most important portion of the lesson comes when students explain their
solution methods. Help students write their explanations on the board or overhead.
Encourage students to ask questions of their classmates. Occasionally have the class try
a particular method with different numbers to see how it works.
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Remember, not every student will invent strategies. However, students can and
will try strategies that they have seen and that make sense to them.

Select Numbers with Care

With traditional algorithms you are used to distinguishing between problems that
require regrouping and those that do not. The number of digits involved is another
common method of judging problem difficulty. When encouraging students to develop
their own methods, there are more factors to consider. For addition, 35 + 42 is gener-
ally easier than 35 + 47. However, 30 + 20 is easier than both and can help students
begin to think in terms of tens. A next step might be 46 + 10 or 20 + 63.

For subtraction, being able to give the other part of 100 is especially useful.
Therefore, tasks such as Thirty-five and how much more make 100? can provide important
readiness for later problems. Tasks such as 417 — 103 or 417 — 98 may each encourage
students to subtract 100 and then adjust.

For multiplication, multiples of 5, 10, and 25 are good starting points. Even
325 x 4 may be easier than 86 x 7 even though there are three digits in the former exam-
ple. For division, it is the divisor that requires attention. And, because most invented
strategies for division rely on multiplication, the same comment applies. For example,
483 + 75 is easier than 483 + 67 and not much harder than 327 + 6.

Integrate Computation with Place-Value Development

In Chapter 2 we made the point that as students develop computational strategies,
they are enhancing their understanding of place value. Notice how the examples in
the preceding section on number selection can help reinforce the way that our number
system is built on a structure of groups of tens. In Chapter 2 there is a section entitled
“Activities for Flexible Thinking with Whole Numbers” (pp. 51-56). The activities in
that section are appropriate for grades 3 or 4 and complement the development of
invented strategies, especially for addition and subtraction.

Progression from Direct Modeling

Direct modeling involving tens and ones can and will lead eventually to invented
strategies. However, students may need to be encouraged to move away from the direct
modeling process. Here are some ideas:

e Record students’ verbal explanations on the board in ways that they and
others can model. Have the class follow the recorded method using different
numbers.

e Ask students who have just solved a problem with models to see if they can do
it in their heads.

e Pose a problem to the class and ask students to solve it mentally if they are
able.

e Ask children to make a written numeric record of what they did when they
solved the problem with models. Explain that they are then going to try to use
the same method on a new problem.

DEVELOPMENT OF INVENTED STRATEGIES: A GENERAL APPROACH



Invented Strategies for Addition and Subtraction

e Research has demonstrated that children will invent a lot of different strategies
for addition and subtraction. Your goal might be that each of your students has at least
one or two methods that are reasonably efficient, mathematically correct, and useful
with lots of different numbers. Expect different children to settle on different strategies.

It is not at all unreasonable for students to be able to add and subtract two-digit
numbers mentally in the third grade. However, even in fourth grade, do not push all
students to pure mental computation. By recording on the board the ideas that stu-
dents use, you help all students develop new approaches. Those who need short-term
memory assistance can see ways to support their strategies by jotting down intermedi-
ate results on paper. The goal should be flexible, meaningful computation. These meth-
ods tend to become mental with frequent use.

Most of the ideas suggested here for addition and subtraction can be taught and
even mastered by the end of second grade. However, most third-grade students and
even fifth- and sixth-grade students have not developed invented strategies. The
sequence of ideas proposed is appropriate at any grade.

Adding and Subtracting Single Digits

Children can easily extend addition and subtraction facts to higher decades.

Tommy was on page 47 of his book. Then he read 8 more pages. How
many pages did Tommy read in all?

If students are simply counting on by ones, the following activity may be useful.
It is an extension of the make-ten strategy for addition facts.

00000 . 3
o0 v Ten-Frame Adding and Subtracting
+ 6 Quickly review the make-ten idea from addition
0000 facts using two ten-frames. (Add on to get up to
[ ] ten and then add the rest.) Challenge students to

use the same idea to add on to a two-digit num-
ber as shown in Figure 4.3. Two students can
work together. First, they make a specified two-

ooeoele digit number with the little ten-frame cards. They
) 47 then stack up all of the less-than-ten cards and

+ 6 turn them over one at a time. Together they talk
oeeeoe about how to get the total quickly.
) The same approach is used for subtraction.

For instance, for 53 - 7, take off 3 to get to 50,
then 4 more is 46.

FIGURE 4.3
Little ten-frame cards can help students extend the make- Notice how building up through ten (as in 47 + 6) or
ten idea to larger numbers. down through ten (as in 53 - 7) is different from carrying
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and borrowing. No ones are exchanged for a ten nor a ten for ones. The ten-frame
cards encourage students to work with multiples of ten without regrouping.

Another important model to use is the hundreds chart. The hundreds chart has
the same tens structure as the little ten-frame cards. For 47 + 6 you count 3 to get out
to 50 at the end of the row and then 3 more in the next row.

Adding Two-Digit Numbers

For each of the examples that follow, a possible recording method is offered. These
are intended to be suggestions, not prescriptions. Students have difficulty inventing re-
cording techniques. If you record their ideas on the board as they explain their ideas, you
are helping them develop written techniques. You may even discuss recording methods
with individuals or with the class to decide on a form that seems to work well. Hori-
zontal formats encourage students to think in terms of numbers instead of digits. A
horizontal format is also less likely to encourage use of the traditional algorithms.

Students will often use a counting-by-tens-and-ones technique for some of these
methods. That is, instead of “46 + 30 is 76,” they may count “46 — 56, 66, 76.”
These counts can be written down as they are said to help students keep track.

Figure 4.4 illustrates four different strategies for addition of two two-digit num-
bers. The following story problem is a suggestion.

The two Scout troops went on a field trip. There were 46 Girl Scouts and
38 Boy Scouts. How many Scouts went on the trip?

The move to make-ten and compensation strategies are useful when one of the num-
bers ends in 8 or 9. To promote that strategy, present problems with addends like 39 or
58. Note that it is only necessary to adjust one of the two numbers.

@ Try adding 367 + 155 in as many different ways as you can. How many of your
ways are like those in Figure 4.4?

. . . . FIGURE 4.4
Invented Strategies for Addition with Two-Digit Numbers . .
Four different invented

Add Tens, Add Ones, Then Combine Move Some to Make Tens Stmte_giffs for adding two

46 + 38 4 46 + 38 2 two-digit numbers.
40 and 30 is 70. +38 Take 2 from the 46 and put 4%+ 3
6 and 8 is 14. 70 it with the 38 to make 40. 44 + 40
70 and 14 is 84. 14 Now you have 44 and 40

- f §4
g4 more is 84.

Add On Tens, Then Add Ones Use a Nice Number and Compensate

46 + 38 46 + 38 4¢ + 3%
46 and 30 more is 76. 4¢ + 38 > 46 and 40 is 86. 4 + 40>
Then | added on the other 8. ¢ That’s 2 extra, so it's 84.
76and4is80and 4is84. [+ § >80, 84 86 -2 >4
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FIGURE 4.5

Subtraction by counting up
is a powerful method.

Subtracting by Counting Up

This is an amazingly powerful way to subtract. Students working on the think-
addition strategy for their basic facts can also be solving problems with larger numbers.
The concept is the same. It is important to use join with change unknown problems or
missing-part problems to encourage the counting-up strategy. Here is an example of
each.

Sam had 46 baseball cards. He went to a card show and got some more
cards for his collection. Now he has 73 cards. How many cards did Sam buy
at the card show?

Juanita counted all of her crayons. Some were broken and some not. She
had 73 crayons in all. 46 crayons were not broken. How many were broken?

The numbers in these problems are used in the strategies illustrated in Figure 4.5.

Emphasize the value of using tens by posing problems involving multiples of 10.
In 50 - 17, the use of ten can happen by adding up from 17 to 20, or by adding 30 to
17. Some students may reason that it must be 30-something because 30 and 17 is less
than 50, and 40 and 17 is more than 50. Because it takes 3 to go with 7 to make 10, the
answer must be 33. Work on naming the missing part of 50 or 100 is also valuable. (See
Activity 2.18, “The Other Part of 100,” p. 54.)

Take-Away Subtraction

Take-away methods are more difficult to do mentally or even with the help of
paper and pencil. This is especially true when problems involve three digits. Exceptions
involve problems such as 423 — 8 or 576 — 300 (subtracting a number less than 10 or
a multiple of 10 or 100). However, take-away strategies are bound to occur, probably
because traditional textbooks emphasize take-away as the meaning of subtraction. Take-

Invented Strategies for Subtraction by Counting Up

Add Tens to Get Close, Then Ones Add Ones to Make a Ten, Then Tens and Ones
73-46 46>20 73-46 T3 - 4¢
46 and 20 is 66. €6 ~ 4 | 46and4is50. 4¢+ 4 >S50
(30 more is too much.) 70 ~3 50 and 20 is 70 and 3 +20>70
Then 4 more is 70 and 3 is 73. 73 —— | moreis 73.The 4 and 3 3 ]
That's 20 and 7 or 27. 27 is 7 and 20 is 27. %\ -
<
Add Tens to Overshoot, Then Come Back
7346 Similarly, N
46 and 30 is 76 73 -4¢ 46and 4 is 50. ;2 + ;:’51;-95
) "AC ¢-73 50 and 23 is 73.
Thats3too 46 +30>76-3 573 | o0 s o, 23+ 4=727
much, so it’s 27. 20-3=127
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away is very likely the strategy that will come to mind first for students who have pre-
viously been taught the traditional algorithm.

Four take-away strategies are shown in Figure 4.6, and these should not be
discouraged. We suggest, however, that you emphasize adding-on methods when-
ever possible.

There were 73 children on the playground. The 46 third-grade students
came in first. How many children were still outside?

The two methods that begin by taking tens from tens are reflective of what most
students do with base-ten pieces. The other two methods leave one of the numbers
intact and subtract from it. Try 83 — 29 in your head by first taking away 30 and adding
1 back. This is a good mental method when subtracting a number that is close to a
multiple of ten.

@ Try computing 82 — 57. Use both take-away and counting up methods. Can you
use all of the strategies in Figures 4.5 and 4.6 without looking?

Extensions and Challenges

Each of the examples in the preceding sections involved sums less than 100 and
all involved bridging a ten; that is, if done with a traditional algorithm, they require car-
rying or borrowing. Bridging, the size of the numbers, and the potential for doing prob-
lems mentally are all issues to consider.

. : FIGURE 4.6
Invented Strategies for Take-Away Subtraction .
Take-away strategies work
Take Tens from the Tens, Then Subtract Ones | Take Away Tens, Then Ones reasonably well for two-
73— 46 73-46 digit problems. They are a
70 minus 40 is 30. 73minus 40is 33. 73 - 40 >33 -3 bit more difficult with
Take away 6 more T3 - 4¢ Then take away 6: - three digits.
is 24. 70-40—> 30-6¢—> 3 makes 30 and 30-3—>27
Now add in the e 3 more is 27.
. +
3 ones 27 =2l Take Extra Tens, Then Add Back
73 -46
or 73 take away 50is 23. (2= S0—>23+ 4
7\$ That's 4 too many. 2
. . 23 and 4 is 27. 4
70 minus 40 is 30. - 4¢
—_—
| can take those 3 away, 30 Add to the Whole If Necessary

but | need 3 more

from the 30 to make 27. -3 73-46

27 Give 3 to 73 to make 76. T3 - 4¢
76 take away 46 is 30. 76 -4¢ >3
Now give 3 back — 27.

-3 >27
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Bridging

For most of the strategies, it is easier to add or subtract when bridging is not
required. Try each strategy with 34 + 52 or 68 — 24 to see how it works. Easier problems
instill confidence. They also permit you to challenge your students with a “harder
one.” There is also the issue of bridging 100 or 1000. Try 58 + 67 with different strate-
gies. Bridging across 100 is also an issue for subtraction. Problems such as 128 — 50 or
128 — 45 are more difficult than ones that do not bridge 100.

Larger Numbers

Most curricula will expect third graders to add and subtract three-digit numbers.
Your state standards may even require work with four-digit numbers. Try seeing how
you would do these without using the traditional algorithms: 487 + 235 and 623 - 247.
For subtraction, a counting-up strategy is usually the easiest. Occasionally, other strate-
gies appear with larger numbers. For example, “chunking off” multiples of 50 or 25 is
often a useful method. For 462 + 257, pull out 450 and 250 to make 700. That leaves
12 and 7 more — 719.

Traditional Algorithms for
Addition and Subtraction

The traditional computational methods for addition and subtraction are signifi-
cantly different from nearly every invented method. In addition to starting with the
rightmost digits and being digit oriented (as already noted), the traditional approaches
involve the concept generally referred to as regrouping, exchanging 10 in one place-
value position for 1 in the position to the left (“carrying”), or the reverse, exchanging 1
for 10 in the position to the right (“borrowing”). The terms borrowing and carrying are
obsolete and conceptually misleading. The word regroup also offers no conceptual help
to students. A preferable term is trade. Ten ones are fraded for a ten. A hundred is traded
for 10 tens. Trading makes sense with the use of base-ten pieces when, in fact, pieces
must be traded; for example, a ten piece is traded in for 10 ones pieces.

Terminology aside, the trading process is quite different from the bridging process
used in all invented and mental strategies. Consider the task of adding 28 + 65. Using
the traditional method, we first add 8 and 5. The resulting 13 ones are separated into
3 ones and 1 ten. The newly formed ten is then combined with the other tens. This
process of “carrying a ten” is conceptually difficult and is different from the bridging
process that occurs in invented strategies. In fact, nearly all major textbooks now teach
this process of regrouping prior to and separate from direct instruction with the addi-
tion and subtraction algorithm, an indication of the difficulties involved. The process is
even more difficult for subtraction, especially across a zero in the tens place where two
successive trades are required.

Compounding all of this is the issue of recording each step. The traditional
algorithms do not lend themselves to mental computation, so students must learn to
record. The literature of the past 50 years is replete with the errors that students make
with these recording methods.

All of these observations are offered to encourage you to abandon the traditional
algorithms for addition and subtraction and, failing that, to alert you to the difficulties
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your students will likely have. Having said that, we offer some
guidance for you if you must teach the standard procedures.

45
—27

* Because it will never occur to students to add or sub-
tract beginning in the ones place, you will have to

use a more direct approach to instruction rather than @

7

a strictly problem-oriented approach.

e Use base-ten models and no recording at all until stu- Not enough ones to take off 7.
dents seem to understand the process. Trade a ten for 10 ones.
e For subtraction, model only the whole or top num- FIGURE 4.7

ber. For the bottom number, have students write the
digits on small slips of paper as shown in Figure 4.7.

Setting up the subtraction algorithm.

e Develop the written method in a do-then-record approach. Whenever any
change is made with the base-ten models, students record the action in the
standard manner. Most traditional textbook explanations generally offer good
guidance. However, they move to pure drill far too quickly with the result
often being rules without reasons.

e Pay special attention to difficulties involving zero, especially in problems such
as 504 - 347 where students must “borrow across zero.” These problems should
be solved with models and discussed as a class.

Invented Strategies for Multiplication

e Computation strategies for multiplication are considerably more complex than
for addition and subtraction. Often, but by no means always, the strategies that stu-
dents invent are very similar to the traditional algorithm. The big difference is that
students think about numbers, not digits. They always begin with the large or
left-hand numbers.

For multiplication, the ability to break numbers apart in flexible ways is even
more important than in addition or subtraction. The distributive property is another
concept that is important in multiplication computation. For example, to multiply
43 x 5, one might think about breaking 43 into 40 and 3, multiplying each by 5, and
then adding the results. Children require ample opportunities to develop these con-
cepts by making sense of their own ideas and those of their classmates.

Useful Representations

The problem 34 x 6 may be represented in a number of ways, as illustrated in
Figure 4.8. Often the choice of a model is influenced by a story problem. To determine
how many Easter eggs 34 children need if each colors 6 eggs, children may model
6 sets of 34 (or possibly 34 sets of 6). If the problem is about the area of a rectangle
that is 34 cm by 6 cm, then some form of an array is likely. But each representation
is appropriate for thinking about 34 x 6 regardless of the context, and students should
get to a point where they select ways to think about multiplication that are meaningful
to them.
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How students represent a product interacts with
their methods for determining answers. The groups of
34 might suggest repeated additions—perhaps taking
the sets two at a time. Double 34 is 68 and there are
three of those, so 68 + 68 + 68. From there a variety
of methods are possible.

The six sets of base-ten pieces might suggest

breaking the numbers into tens and ones: 6 times

3 tens or 6 x 30 and 6 x 4. Some children use the tens
individually: 6 tens make 60. So that’s 60 and 60 and
60 (180). Then add on the 24 to make 204.

I -m I am
I I 17 .
— — It is not uncommon to arrange the base-ten
— — pieces in a nice array, even if the story problem does
— I
— T — not suggest it. The area model is very much like an
arrangement of the base-ten pieces.
I I
— — All of these ideas should be part of students’
I I
repertoire of models for multidigit multiplication.
Introduce different representations (one at a time) as
EEEE ways to explore multiplication until you are comfort-
gooo able that the class has a collection of useful ideas. At
mooo the same time, do not force students who reason very
well without drawings to use models when they are
not needed.
34
¢ 6 x30 Cx4 T .
- " Multiplication by a

Single-Digit Multiplier

FIGURE 4.8 As with addition and subtraction, it is helpful to
Different ways to model 34 x 6 may support different computa- place multiplication tasks in contextual story prob-
tional strategies. lems. Let students model the problems in ways that

make sense to them. Do not be concerned about mix-

ing of factors (6 sets of 34 or 34 sets of 6). Nor should

you be timid about the numbers you use. The problem

Complete-Number Strategies for Multiplication 3 x 24 may be easier than 7 x 65, but the latter pro-

vides challenge. The types of strategies that students

+ 2:2 635 3 use for multiplication are much more varied than for
— > 12¢ addition and subtraction. However, the following three
12¢ ¢3 categories can be identified from the research to date.
+ <3 31s
189 ke > 12¢ Complete-Number Strategies
'f/“— 3 189 Students who are not yet comfortable breaking
252 numbers into parts using tens and ones will approach
+ <3 3 the numbers in the sets as single groups. For students
3ls who think this way, Figure 4.9 illustrates two methods
they may use. These children will benefit from listen-
FIGURE 4.9 ing to students who use base-ten models. They may
Children who use a complete-number strategy do not break also need more work with base-ten grouping activities
numbers apart into decades or tens and ones. where they take numbers apart in different ways.
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Partitioning Strategies for Multiplication

By Decades
27 x4

4X2—O:go>l0g 77<200=|400)‘g20

4xT7=28 7x60=420\/
Tx§=5S6

268 x 7

187¢
Partitioning the Multiplier
46 x 3
Double 46— 92
N/
138

By Tens and Ones

27 x4
10x4=40
Tx4=28 ) 108

Other Partitions
27 x 8

So 25 x4—> 100
25 x § — 200
2eg 16— 216

Partitioning Strategies

Students break numbers up in a variety of ways that reflect an understanding of

FIGURE 4.10

Numbers can be broken
apart in different ways to
make easier partial prod-
ucts, which are then com-
bined. Partitioning by
decades is useful for men-
tal computation and is
very close to the standard
algorithm.

base-ten concepts, at least four of which are illustrated in Figure 4.10. The “By Decades”
approach is the same as the standard algorithm except that students always begin with
the large values. It extends easily to three digits and is very powerful as a mental math
strategy. Another valuable strategy for mental methods is found in the “Other Partitions”
example. It is easy to compute mentally with multiples of 25 and 50 and then add or
subtract a small adjustment. All partition strategies rely on the distributive property.

Compensation Strategies

Students look for ways to manipulate numbers so that the calculations are easy.
In Figure 4.11, the problem 27 x 4 is changed to an easier one, and then an adjustment
or compensation is made. In the second example, one factor is cut in half and the
other doubled. This is often used when a 5 or a 50 is involved. Because these strategies
are so dependent on the numbers involved, they can’t be used for all computations.
However, they are powerful strategies, especially for mental math and estimation.

Compensation Strategies for Multiplication

FIGURE 4.11

Compensation methods

use a product related to

27 x4 250 x5
27+3>3%30x4 — 120 | cowm split 250 in hal®
3 x4=12 — -12 amd wmultiply by 0.
108 125 < 10 = 1250
17 x 70
’5><70\

v
200x70 —> 1400-210 —1190

the original. A compensa-
tion is made in the answer,
or one factor is changed to
compensate for a change
in the other factor.
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Using Multiples of 10 and 100

There is a value in exposing students early to products involving multiples of 10
and 100.

The Scout troop wanted to package up 400 fire starter Kits as a fund-
raising project. If each pack will have 12 fire starters, how many fire starters
are the Scouts going to need?

Students will use 4 x 12 = 48 to figure out that 400 x 12 is 4800. There will be
discussion around how to say and write “forty-eight hundred.” Be aware of students
who simply tack on zeros without understanding why. Try problems such as 30 x 60
or 210 x 40 where tens are multiplied by tens.

Two-Digit Multipliers

A problem such as this one can be solved in many different ways:

The parade had 23 clowns. Each clown carried 18 balloons. How many
balloons were there altogether?

Some children look for smaller products such as 6 x 23 and then add that result three
times. Another method is to do 20 x 23 and then subtract 2 x 23. Others will calculate
four separate partial products: 10 x 20 = 200, 8 x 20 = 160, 10 x 3 = 30, and 8 x 3 = 24.
And still others may add up a string of 23s. Two-digit multiplication is both complex
and challenging. But students can solve these problems in a variety of interesting ways,
many of which will contribute to the development of the traditional algorithm or one
that is just as efficient. Time devoted to working on these tasks in the fourth and fifth
grades is well spent.

Area Models

When working on multiplication strategies, a key idea is finding ways to break
one or both of the numbers into smaller numbers. For 34 x 6, if 34 is broken into 30
and 4, both the 30 and the 4 must be multiplied by 6. Models are an enormous help in
developing this idea. Refer again to Figure 4.8 (p. 114) to see models of 34 x 6. An area
model can expand this idea to two-digit multipliers.

A valuable exploration is to prepare large rectangles for each group of two or
three students. The rectangles should be measured carefully, with dimensions between
25 cm and 60 cm, and drawn accurately with square corners. (Use the corner of a piece
of poster board for a guide.) The students’ task is to determine how many small ones
pieces (base-ten materials) will fit inside. Wooden or plastic base-ten pieces are best, but
cardboard strips and squares are adequate. Alternatively, rectangles can be drawn on
BLM 16 base-ten grid paper (see Blackline Masters).

Most students will fill the rectangle first with as many hundreds pieces as possi-
ble. One obvious approach is to put the 12 hundreds in one corner. This will leave nar-
row regions on two sides that can be filled with tens pieces and a final small rectangle
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that will hold ones. Especially if students have had earlier 47 cm
experiences with finding products in arrays, figuring out the
size of each subrectangle is not terribly difficult. The sketch in ™
Figure 4.12 shows the four regions.
Hundreds 2 30
If you did not already know the algorithm, how would 5 ®
you determine the size of the rectangle? Use your 3
@ method (not the standard algorithm) on a rectangle L
that measures 68 cm x 24 cm. Make a sketch to show
and explain your work. TS OfES >6

™ 40 TN

As you will see in the discussion of the traditional algo-

rithm, the area model leads to a fairly reasonable approach to FIGURE 4.12

multiplying numbers, even if you never have students “carry,” Ones, tens, and hundreds pieces fit exactly into the

which is a source of many errors. four sections of this 47 x 36 rectangle. Figure the size
of each section to determine the size of the whole

Cluster Problems rectangle.

In the fourth and fifth grades of Investigations in Number,
Data, and Space (one of the NSF-supported reform curricula),
one approach to multidigit multiplication is called “cluster problems.” This rather
unique approach to the topic encourages students to use facts and combinations that
they know or can easily figure out in order to find the answers to more complex com-
putations. For example, the following cluster is used in an introductory lesson in the

fourth-grade unit: 3 x 7, 5x 7, 10 x 7, 50 x 7, and 53 x 7. The goal is to figure out the EXPANDED LESSON

last product. Students solve all of the problems and explain what problems were helpful (pages 129-130)

in solving the last problem. Not every problem in the cluster needs to be used to solve The expanded lesson for this

the final problem. If students wish to add other problems to the cluster to aid in find- chapter has students work
with the area model for

ing their solution to the final problem, they are encouraged to do so. two-digit multiplication.
Here are two cluster problems taken from a fourth-grade worksheet.

2 x 50 60 x 20
10 x 50 62 x 10
34 x 25 62 x3
30 x 50 62 x 23
34 x 50

It is useful to have students make an estimate of the final product before doing
any of the problems in the cluster. In the first example cluster, 2 x 50 may be helpful in
thinking about 10 x 50, which in turn is useful in knowing 30 x 50. Also 2 x 50 can be
used to get 4 x 50. The results of 30 x 50 and 4 x 50 combine to give you 34 x 50. It
may seem that 34 x 25 is harder than 34 x 50. However, if you know 34 x 25, it need
only be doubled to get the desired product. Students should be encouraged to add
problems to the cluster if they need them. Here is a good example: Think how you
could use 10 x 34 (and some other related problems) to find 34 x 25.

The cluster-problem approach begins with students being provided with the clus-
ter of problems. After they have become familiar with the approach, students should
make up their own cluster of problems for a given product. At first, have students
brainstorm clusters together as a class.
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First, solve the two preceding clusters each in at least two ways. Now, try your
hand at making up a cluster of problems for 86 x 42. Include all possible prob-

@ lems that you think might possibly be helpful, even if they are not all related to
one approach to finding the product. Then use your cluster to find the product.
Is there more than one way?

Here are some problems that might be in your cluster.
2 x 80 4 x 80 2 x 86 40 x 80 6 x 40 10 x 86 40 x 86

Of course, your cluster may have included products not shown here. All that is required
to begin the cluster-problem approach is that your cluster eventually leads to a solution.
Besides your own cluster, see if you can use the problems in this cluster to find 86 x 42.

Cluster problems help students think about ways that they can break numbers
apart into easier parts. The strategy of breaking the numbers apart and multiplying the
parts—the distributive property—is an extremely valuable technique for flexible com-
putation. It is also fun to find different clever paths to the solution. For many prob-
lems, finding a workable cluster is actually faster than using an algorithm.

The Traditional Algorithm for Multiplication

o The traditional multiplication algorithm is probably the most difficult of the four
algorithms if students have not had plenty of opportunities to explore their own strate-
gies. Time spent allowing your students to develop a range of invented strategies will
pay off in their understanding of the traditional algorithm. While your students are
working on multiplication using their invented strategies, be sure to emphasize parti-
tioning techniques, especially those that are similar to the “By Decades” approach shown
in Figure 4.10 (p. 115). These strategies tend to be the most efficient and are very close
to the traditional algorithm. In fact, students who are using one or more partitioning
strategies with a one-digit multiplier have no real need to learn any other approach.

The multiplication algorithm can be meaningfully developed using either a
repeated addition model or an area model. For single-digit multipliers, the difference
is minimal. When you move to two-digit multipliers, the area model has some advan-
tages. For that reason, the discussion here will use the area model.

One-Digit Multipliers
As with the other algorithms, as much time as possible should be devoted to

the conceptual development of the algorithm with the recording or written part
coming later.

Begin with Models

Give students a drawing of a rectangle 47 cm by 6 cm. How many small square
centimeter pieces will fit in the rectangle? (What is the area of the rectangle in square
centimeters?) Let students solve the problem in groups before discussing it as a class.
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47

4 tens and 7 ones

FIGURE 4.13
A rectangle filled with

base-ten pieces is a useful

model for two-digit-by-

6 ones

one-digit multiplication.

6 times 40
is 240.

6 ones times 4 tens
is 24 tens, or 240.

6 ones times
7 ones is 42 ones.

As shown in Figure 4.13, the rectangle can be “sliced” or separated into two parts
so that one part will be 6 ones by 7 ones, or 42 ones, and the other will be 6 ones by 4
tens, or 24 tens. Notice that the base-ten language “6 ones times 4 tens is 24 tens” tells
how many pieces (sticks of ten) are in the big section. To say “6 times 40 is 240" is also
correct and tells how many units or square centimeters are in the section. Each section
is referred to as a partial product. By adding the two partial products, you get the total

product or area of the rectangle.

To avoid the tedium of drawing large rectangles and arranging base-ten pieces,
use the base-ten grid paper found in the Blackline Masters. On the grid paper, students
can easily draw accurate rectangles showing all of the pieces. Check to be sure students
understand that for a product such as 74 x 8, there are two partial products, 70 x 8 = 560
and 4 x 8 = 32, and the sum of these is the product. Do not force any recording tech-
nique on students until they understand how to use the two dimensions of a rectangle

to get a product.

Develop the Written Record

When the two partial products are written separately as in Figure 4.14(a), there is
little new to learn. Students simply record the products and add them together. As illus-
trated, it is possible to teach students how to write the first product with a carried digit

so that the combined product is written on one line.
This traditional recording scheme is known to be
problematic. The little carried digit is often the
source of difficulty—it gets added in before the
second multiplication or is forgotten.

There is absolutely no practical reason why
students can’t be allowed to record both partial prod-
ucts and avoid the errors related to the carried digit.
When you accept that, it makes no difference in which
order the products are written. Why not simply permit
students to do written multiplication as shown in Fig-
ure 4.14 without carrying? Furthermore, that is pre-
cisely how this is done mentally.

Most standard curricula progress from two digits
to three digits with a single-digit multiplier. Students
can make this progression easily. They still should be
permitted to write all three partial products separately
and not have to bother with carrying.

8|4 /Zg4 35|7

X 6/\/,& 6 X |8

0|0

{4@80 51014 Zioo

T 56
504

28|56

(a) (b)

FIGURE 4.14

(a) In the standard form, the product of ones is recorded first.
The tens digit of this first product can be written as a “carried”
digit above the tens column. (b) It is quite reasonable to
abandon the carried digit and permit the partial products to
be recorded in any order.
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< 4 tens > 7 0nes
A 0
GC-) <—]
o ~ 6 ones times 7 ones
© is 42 ones.
A
6 ones times 4 tens
© is 24 tens.
(/2]
C
2
(42) \
Y'Y f
3 tens times 4 tens 3 tens times 7 ones ThIHIT O ThIHTT IO
is 12 hundreds. is 21 tens.
2
#
47 4|7 4|7
x 36 x|3]|6 x|3|6
1200 ~~a |2 2|82
210 g
240 ~2 | 4 114 |1
42 A i —t2 |1
L possible
1692 alternative -1 | 2 1161912
11692
FIGURE 4.15

47 = 36 rectangle filled with
base-ten pieces. Base-ten
language connects the four
partial products to the tra-
ditional written format.
Note the possibility of
recording the products

in some other order.

Two-Digit Multipliers

With the area model, the progression to a two-digit multiplier is relatively
straightforward. Rectangles can be drawn on base-ten grid paper, or full-sized rectangles
can be filled in with base-ten pieces. There will be four partial products, corresponding
to four different sections of the rectangle.

Figure 4.15 also shows the recording of four partial products in the traditional
order and how these can be collapsed to two lines if carried digits are used. Here the
second “carry” technically belongs in the hundreds column but it rarely is written
there. Often it gets confused with the first and is thus an additional source of errors.
The lower left of the figure shows the same computation with all four products written
in a different order. This is quite an acceptable algorithm. In the rare instance when
someone multiplies numbers such as 538 x 29 with pencil and paper, there would be
six partial products. But far fewer errors would occur, requiring less instructional time
and much less remediation.
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Invented Strategies for Division

e In our discussion of division facts (Chapter 3), we included something we called
“near facts.” In a near fact, the divisor and quotient are both less than ten but there is a
remainder, as in 44 + 8. Third- and fourth-grade stu-

dents should have ample experiences with near facts. 92 - 4

When these problems are expanded to those in which =/ P
the quotients are more than 9 (e.g., 73 + 6), the process @) |/ N I’ o ‘I
evolves into invented strategies for division. : : THOE
|
| H
\ !

Sharing and Measurement Problems / /NN N

\

1 Bg |

| SD o |

First there is the partition or fair-sharing idea, illus- I Dg By

trated by this story problem: L %
t--7

The bag has 783 jelly beans, and Aidan
and her four friends want to share them
equally. How many jelly beans will Aidan
and each of her friends get?

oo
[u]
oo
[u]
[m]
oo
[u]

Recall that there are two concepts of division. E

(b) 453 — 6
(share with 6 kids)
Then there is the measurement or repeated subtraction

-

Jumbo the elephant loves peanuts. His

trainer has 625 peanuts. If he gives Jumbo

. Likiklblh |k

20 peanuts each day, how many days will the 2|2 2|2 2|
eanuts last? s|s|s|s|s|s |
P of1o|w0]iof0|0| 772

lofloflojloflo|lo

S0 |S0|S0|s0 |50 |s0

Students should be challenged to solve both V]2 3 ]4]s|¢

types of problems. However, the fair-share problems
are often easier to solve with base-ten pieces. Further- (c) 143 jelly beans shared with 8 kids
more, the traditional algorithm is built on this idea.
Eventually, students will develop strategies that they :

. 12 groups of 8 is 96.
will apply to both types of problem, even when the 12 groups in 100 leaves 4
process does not match the action of the story. 5 groups of 8 is 40.

Figure 4.16 shows some strategies that fourth- And 3 more left over.

grade students have used to solve division problems. 12+5is 17 with 7 left.
The first example illustrates 92 + 4 using base-ten
pieces and a sharing process. A ten is traded when n? Students use both models and symbols to solve division tasks.
more tens can be passed out. Then the 12 ones are dis- Source: From Developing Mathematical Ideas: Numbers and Operations,
tributed, resulting in 23 in each set. This direct model- Part I: Building a System of Tens Casebook, by D. Schifter, V. Bastable,
. . . . . & S. J. Russell. Copyright © 1999 by Education Development Center,
ing approach with base-ten pieces is quite easy even

Inc. Published by Dale Seymour Publications, an imprint of Pearson
for third-grade students to understand and use. Learning. Used by permission.

Try 14x 8 — 112

FIGURE 4.16
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In the second example, the student sets out the base-ten pieces and draws a “bar
graph” with six columns. After noting that there are not enough hundreds for each kid,
he mentally splits the 3 hundreds in half, putting 50 in each column. That leaves him
with 1 hundred, 5 tens, and 3 ones. After trading the hundred for tens (now 15 tens),
he gives 20 to each, recording 2 tens in each bar. Now he is left with 3 tens and 3 ones,
or 33. He knows that 5 x 6 is 30, so he gives each kid 5, leaving him with 3. These he
splits in half and writes % in each column.

The student in the third example is solving a sharing problem but tries to do it
as a measurement process. She wants to find out how many 8s are in 143. Initially she
guesses. By multiplying 8 first by 10, then by 20, and then by 14, she knows the answer
is more than 14 and less than 20. After some more work (not shown), she rethinks the
problem as how many 8s in 100 and how many in 40.

Missing Factor Strategies

You can see in Figure 4.16 how the use of base-ten pieces tends to lead to a digit-
by-digit strategy—share the hundreds first, then the tens, then the ones. Although this
is precisely the conceptual background behind the traditional algorithm, it is digit ori-
ented as opposed to an approach that helps students think of the whole value of the
dividend. In Figure 4.16(c), the student is using a multiplicative approach. She is trying
to find out, “What number times 8 will be close to 143 with less than 8 left over?” This
is a good method to suggest to students in grades 3-5. It will build on their multiplica-
tion skills, it is a method that lends itself to mental estimation, and it can work quite
well for most purposes.

Before reading further, consider the task of determining the quotient of 318 = 7
by trying to figure out what number times 7 (or 7 times what number) is close to
318 without going over. Do not use the standard algorithm.

There are several places to begin solving this problem. For instance, since 10 x 7
is 70 and 100 x 7 is 700, it has to be between 10 and 100, probably closer to 10. You
might start adding up 70s:

70
+ 70 is 140
+ 70 1is 210
+ 70 is 280
+ 70 is 350

So four 70s is not enough and five is too much. It has to be forty-something. At
this point you could guess at numbers between 40 and 50. Or you might add on 7s. Or
you could notice that forty 7s (280) leaves you with 20 plus 18 or 38. Or five 7s will be
35 of the 38 with 3 left over. In all, that’s 40 + 5 or 45 with a remainder of 3.

Another starting point might be 50 x 7. This beginning likely indicates that 40 x 7
will be the largest multiple of ten.
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This missing-factor approach is likely to be invented by some students if they are
solving measurement problems such as the following:

Grace can put 6 pictures on one page of her photo album. If she has 82
pictures, how many pages will she need?

Alternatively, you can simply pose a task such as 82 + 6 and ask students, “What
number times 6 would be close to 82?” and continue from there.

Another approach to developing missing-factor strategies is to use cluster prob-
lems as discussed for multiplication. (See p. 117.) Here are two examples:

100 x 4 10 x 72
500 + 4 5x70
4 x 25 2x72
6 x4 4x72
527 + 4 5x72
381 +72

Notice that the missing-factor strategy is equally as good for one-digit divisors
as for two-digit divisors. Also notice that it is okay to include division problems in the
cluster. In the preceding example, 125 x 4 could easily have replaced 500 + 4, and
400 + 4 could replace 100 x 4. The idea is to keep multiplication and division as
closely connected as possible.

Cluster problems accentuate a flexible approach to computation, helping students
realize that there are many different good ways to compute. Another way to develop
flexibility is to pose a division problem (or a multiplication problem) and have students
solve the problem using two different approaches. Of course, neither of the methods
should be the traditional algorithm or a calculator.

Solve 514 : 8 in two different, nontraditional ways. Your ways may converge in
@ similar places but begin with different first steps, or they may be completely
different.

Here are four possible starting points and there are certainly others:
10x 8 400 + 8 60 x 8 80+8

Try to solve 514 + 8 beginning with each of these starting points.

When students are first asked to solve problems using two methods, they
often use a primitive or completely inefficient method for their second approach. For
example, to solve 514 + 8, a student might perform a very long string of subtractions
(514 - 8 = 506, 506 — 8 = 498, 498 - 8 = 490, and so on) and count how many times he
or she subtracted 8. Others will actually draw 514 tally marks and loop groups of 8.
These students have not developed sufficient flexibility to think of other efficient
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methods. To help with this, pose problems along with two or three starting points and
have students use each of the starting points to solve the problem. Your class discus-
sions will help students begin to see more flexible approaches.

The Traditional Algorithm for Division

If you have been working along with the examples and approaches in this sec-
tion, we hope you are convinced that students can use invented strategies for both one-
digit divisors and two-digit divisors as long as the dividends are less than 1000 and a
whole-number quotient with a remainder is all that is required. That is, it is not signifi-
cantly faster to do 738 + 43 by the traditional algorithm than to use a missing-factor
approach. (Try it!) Notice that while doing the traditional algorithm you also have to
do 308 + 43, another problem as hard as the original. That is, the task often does not
get easier as you go along. Compound this with the abundant difficulties of the tradi-
tional algorithm and the concomitant reteaching that inevitably takes place.

However, many will argue that students simply must have a more efficient
method of dividing than those suggested here. Furthermore, if the curriculum requires
division with decimal divisors or quotients to be carried out to get decimal results (in
contrast to whole-number remainders), an argument can possibly be made for teaching
a traditional algorithm. We, therefore, share with you one approach to the traditional
long-division algorithm. Because the algorithm most often taught in textbooks is based
on the partition or fair-sharing concept of division, that is the method described here.
(Some teachers may want to explore a repeated subtraction algorithm that is very much
like a missing-factor approach with partial products recorded in a column to the right
of the division computation. See Figure 4.17 for an example.)

One-Digit Divisors

§)672 §)67Z
soo | 1©° 00| 20
(72 S72
100 | 29 100 | 20
72 972
so| © 200 | YO
22 272
20| ¢ 200 |70
@| 37 RZ 72
<o |10
22
20| 7
——Cj Y R2
FIGURE 4.17

In the division algorithm shown, the numbers on the side
indicate the quantity of the divisor being subtracted
from the dividend. As the two examples indicate, the
divisor can be subtracted from the dividend in any
amount desired.

Typically, the division algorithm with one-digit divi-
sors is introduced in the third grade. If done well, it should
not have to be retaught, and it should provide the basis for
two-digit divisors.

Begin with Models

Traditionally, for a problem such as 4)583, we might
say “4 goes into 5 one time.” This is quite mysterious to stu-
dents. How can you just ignore the “83” and keep changing
the problem? Preferably, you want students to think of the
583 as 5 hundreds, 8 tens, and 3 ones, not as the indepen-
dent digits 5, 8, and 3. One idea is to use a context such as
candy bundled in boxes of ten with 10 boxes to a carton.
Then the problem becomes We have 5 boxes, 8 cartons, and 3
pieces of candy to share between 4 schools evenly. In this con-
text, it is reasonable to share the cartons first until no more
can be shared. Those remaining are “unpacked,” and the
boxes shared, and so on. Money ($100, $10, and $1) can be
used in a similar manner.
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Try the distributing or sharing process yourself using base-ten pieces (or draw
squares, sticks, and dots). Use the problem 524 + 3. Try to talk through the pro-
cess without using “goes into.” Think sharing.

Language plays an enormous role in thinking about the algorithm conceptually.
Most adults are so accustomed to the “goes into” language that it is hard to let it go. For
the problem 583 =+ 4, here is some suggested language as you work through the task:

I want to share 5 hundreds, 8 tens, and 3 ones among these four sets. There are
enough hundreds for each set to get 1 hundred. That leaves 1 hundred that I can’t
share.

I'll trade the hundred for 10 tens. That gives me a total of 18 tens. I can
give each set 4 tens and have 2 tens left over. Two tens is not enough to go
around the four sets.

I can trade the 2 tens for 20 ones and put those with the 3 ones I already
had. That makes a total of 23 ones. I can give 5 ones in each of the four sets.
That leaves me with 3 ones as a remainder. In all I gave out 1 hundred, 4 tens,
and 5 ones with 3 left over.

Develop the Written Record

The recording scheme for the long-division algorithm is not completely intuitive.
You will need to be quite directive in helping children learn to record the fair sharing
with models. There are essentially four steps:

Share and record the number of pieces put in each group.

Record the number of pieces shared in all. Multiply to find this number.
Record the number of pieces remaining. Subtract to find this number.
Trade (if necessary) for smaller pieces and combine with any that are there
already. Record the new total number in the next column.

W=

When students model problems with a one-digit divisor, steps 2 and 3 seem
unnecessary. Explain that these steps really help when you don’t have the pieces there
to count.

Record Explicit Trades

Figure 4.18 details each step of the recording process just described. On the left,
you see the traditional algorithm. To the right is a suggestion that matches the actual
action with the models by explicitly recording the trades. Instead of the somewhat
mysterious “bring-down” procedure, the traded pieces are crossed out, as is the number
of existing pieces in the next column. The combined number of pieces is written in this
column using a two-digit number. In the example, 2 hundreds are traded for 20 tens,
combined with the 6 that were there for a total of 26 tens. The 26 is therefore written
in the tens column.

Students who are required to make sense of the long-division procedure find the
explicit-trade method easier to follow. It is important to spread out the digits in the divi-
dend when writing down the problem. (The explicit-trade method is a Van de Walle in-
vention. It has been used successfully in grades 3 to 8. You will not find it in textbooks.)
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FIGURE 4.18 Traditional Alternative
The traditional and explicit-trade “bring-down” method explicit-trade method
methods are connected to each CICT M oo

step of the division process. Every 1
6|3 e e e 57|63

. )

A. 1 hundred given to each set. 2

step can and should make sense. 5
Record in answer space.

B. 5 sets of 1 hundred each is 5 x 1.
Record under the 7.
(a) C. 7 -5 =2 tells how many hundreds are left.
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I — D. Trade 2 hundreds for 20 tens plus 2

6 tens already there is 26 tens.
—— Bring down the 6 to show 26 tens.

(b) Cross out the 2 and the 6. Write 26 in the tens column.
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< A. Pass out 5 tens to each set. 1
Record in the answer space.
B. 5 sets of 5 each is 5 x 5 = 25 tens.
Record the 25.
L— (Note two different ways of recording.)
(c) C. 26 — 25 =1 tells how many tens are left.
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D. Trade 1 ten for 10 ones plus 3 ones.
Already there is 13 ones.
——— Bring down the 3 to show 13 ones.

Cross out the 1 and the 3 and write 13
in the ones column.—— >

o
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A. Pass out 2 ones to each set.
Record in the answer space.
B. 5 sets of 2 ones each is 10 ones.
Record the 10.
(d) C. Subtract 10 from 13. There are 3 ones left.
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Both the explicit-trade method and the use of
place-value columns will help with the problem of leav-
ing out a middle zero in a problem (see Figure 4.19).

Two-Digit Divisors

There is almost no justification for having stu-
dents master the division algorithm with two-digit divi-
sors. A large chunk of the fourth, fifth, and sometimes
sixth grade is frequently spent on this outdated skill.
The cost in terms of time and students’ attitudes toward
mathematics is enormous. Only a few times in any
adult’s life will an exact result to such a computation be

Avoid this error. Place-value columns can help.
17 1/0]7 1/0[7

6)642 66|42 6)6[4|2
6 6| |« 6
042 42 0|42
42 4|2

0
FIGURE 4.19

Using lines to mark place-value columns can help avoid for-
getting to record zeros.

required and a calculator not be available. If you can possibly influence the removal of
this outdated skill from your school’s curriculum, you are encouraged to speak up.

With a two-digit divisor, it is hard to come up with the right amount to share at
each step. A guess too high or too low means you have to erase and start all over.

An Intuitive Idea

Suppose that you were sharing a large pile of candy with 36 friends. Instead of
passing them out one at a time, you conservatively estimate that each person could get

at least 6 pieces. So you give 6 to each of your friends.
Now you find there are more than 36 pieces left. Do you
have everyone give back the 6 pieces so you can then
give them 7 or 8? That would be silly! You simply pass
out more.

The candy example gives us two good ideas for
sharing in long division. First, always underestimate
how much can be shared. You can always pass out some
more. Second, if there is enough left to share some
more, just do it! To avoid ever overestimating, always
pretend there are more sets among which to share than
there really are. For example, if you are dividing 312 by
43 (sharing among 43 sets or “friends”), pretend you
have 50 sets instead. Round up to the next multiple of
10. You can easily determine that 6 pieces can be shared
among S0 sets because 6 x 50 is an easy product. There-
fore, since there are really only 43 sets, clearly you can
give at least 6 to each. Always consider a larger divisor;
always round up. If your underestimate leaves you with
more to share, simply pass out some more.

Using the Idea Symbolically

These ideas are used in Figure 4.20. Both the
traditional method and the explicit-trade method of
recording are illustrated. The rounded-up divisor, 70, is
written in a little “think bubble” above the real divisor.
Rounding up has another advantage: It is easy to run
through the multiples of 70 and compare them to 374.

Traditional
bring-down method

1
8=59 R 25
63)
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3
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Alternative
explicit-trade method

1
5| 8=59R25
63)3 | 7| 4| 2
37|374 | 592
315 | 504
59 | 88
63
25
FIGURE 4.20

Round the divisor up to 70 to think with, but multiply what you
share by 63. In the ones column, share 8 with each set. Oops!
88 left over, just give 1 more to each set.
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FIGURE 4.21

A checklist with space for
comments or notes lets
you record daily observa-
tions of students’ direct
modeling and invented
strategies.

Work through the problem one step at a time, saying exactly what each recorded step
stands for.

Always rounding the divisor up has two advantages. It reduces the mental strain of
making choices and essentially eliminates the need to erase. If an estimate is too low, that’s
okay. And if you always round up, the estimate will never be too high. Nor is there any
reason ever to change to the more familiar approach. It is just as good for adults as for
children. The same is true of the explicit-trade notation. It is certainly an idea to consider.

Assessment Note

Parents are perhaps more interested in their children’s computational skills
than in any other area. When students do well on computation tests, par-
ents are pleased. But what do you know when students do not do well? At
best you can make inferences based on the papers turned in. You can look for basic-
fact errors and carelessness or perhaps find a systematic error in an algorithm.
What you do not know is how students are solving these problems and what ideas
and strategies they have developed that are useful or need further development.

When computational strategies and algorithms are developed in the manner
suggested in this chapter, every day you are presented with a wealth of assess-
ment data. The important thing is to gather, record, and use these data for indi-
vidual children the same as you would for tests and quizzes. A simple chart
something like the one in Figure 4.21 may be all you need. Note that the third
column includes a minirubric or a three-point scale. Students’ names can be
arranged in groups, by how they sit in the room, or alphabetically—any way that
makes them easy to find.

As you walk around in the during portion of your lessons, and also in the
after portion when students explain their computation strategies and reasoning,
you can make notes on the chart. Make a new chart each week, but keep the old
ones to provide evidence of growth over time. These charts can be useful for grad-
ing and for parent conferences. There is no harm in giving an occasional quiz or
test of computational skills. But avoid giving more value to tests simply because
they are objective.
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EXPANDED LESSON

GRADE LEVEL: Fourth or fifth grade.

MATHEMATICS GOALS
To develop strategies for two-digit multiplication using the
area model.

THINKING ABOUT THE STUDENTS
Students have mastered most of their basic multiplication

facts and understand that multiplication can be thought of

as repeated addition. They have multiplied numbers by
multiples of 10. They understand that length times width
gives the area of a rectangle.

lesson BEFORE

Area Model for Multiplication

MATERIALS AND PREPARATION

Accurately cut from poster board a rectangle that is 47 cm
by 36 cm. Use this to trace rectangles on large sheets of
paper, one for each group of two or three students.
Provide each group of students with base-ten materials,
enough to fill the rectangle.

Draw a 23 cm x 4 cm rectangle on a transparency.
Overhead base-ten materials or regular base-ten materials.
Note: If your base-ten models are not based on centi-
meters, adjust all rectangles to match the size of your
materials.

e Show the transparency of the 23 cm x 4 cm rectangle and write the dimensions of
all four sides. Explain that you want to find out how many unit squares (show some)
will fit in the rectangle, but you don’t have that many unit pieces. How else could we
fill the rectangle? When students suggest the use of tens pieces, have them work
quickly in pairs to decide how many tens pieces and how many ones will fit in the

rectangle.

e Position 8 tens and 12 ones inside the rectangle.
Ask: Now can we tell how many small squares are
in the rectangle? Again, have students solve this
quickly and share their solutions (80 and 12, or

92 units in all).
The Task

e Determine the area of a 47 cm x 36 cm rectangle.

Establish Expectations

e Recognize counting the squares one by one as a legitimate way to determine the area
of the rectangle, but explain to students that they need to find a quicker way to
determine the number of squares inside the rectangle.

e Solutions must include a drawing, numbers, and explanation of how students deter-

mined the total.

DURING

e Most students will first fill the rectangle with as many hundreds pieces as possible. If
some students use only the small ones pieces, suggest that they might try using large

pieces.

e Once students have filled their rectangle, they should work to add up the total num-
ber of ones. Observe the way students count the pieces. Expect that students will
count the individual pieces rather than use the dimensions of the rectangle in a

multiplication.

e For students who have solved the problem and completed their written explana-
tion, see if they can connect what they have done to the numbers in the rectangle

dimensions.
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AFTER

e Begin by recording (without comment) all answers to the task. It is quite possible
that not all groups will have gotten 1692.

e Have students share strategies. Begin with students who may have used less than
efficient methods. Try to include students who wrote down and added the four par-
tial products (1200, 210, 240, and 42). These four partial products most directly
relate to the standard algorithm and are useful for invented strategies as well.

e As new strategies emerge, ask students to compare and contrast the new strategies to
ones already shared. Do not evaluate any approach or answer.

ASSESSMENT NOTES

e Do students see the efficiency of using the larger hundreds pieces? Do they see and
use four separate sections to the filled-in rectangle?

e Do students make connections between the dimensions of the rectangle and its
area? Do they seem aware of the connection between multiplication and area?

e Can students use multiples of ten to determine the smaller regions?

e This task is profitably repeated using rectangles drawn with only one narrow region 14 @ % t ste P $
on base-ten grid paper (see Blackline Master 16). left uncovered.

e For students who have difficulty with this task, use cm- e When students are clearly
grid paper (see Blackline Master 8) to draw a 15 x 30 using four partial products in their solutions, challenge
rectangle. Have students use base-ten materials to fill them to connect their strategies to the dimensions of
inside the rectangle to determine the area. Hundreds the rectangle and then see if they can determine the
pieces fit into this region so that students have to deal area of a 64 x 73 rectangle without using a drawing.
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